


VÁLVULA DE AR VAP

UTILIZAÇÃO / OPERAÇÃO

- As válvulas VAP foram especialmente desenvolvidas para utilização em processos que necessitem de controle automático do fluxo de ar, de baixa pressão, aquecido ou à temperatura ambiente, para pressões de trabalho até 2.000mm C.A.
- Estas válvulas não podem ser utilizadas para gás, por menor que seja a pressão, pois não são construídas com estanqueidade em seus elementos móveis.
- Para operação automática é utilizado um servo-motor capaz de operar todo o curso da válvula, proporcionando um bom controle em qualquer faixa pré determinada.
- Para ajustar o pistão regulável solte o parafuso (6) e gire a porca (9) no sentido horário, para aumentar o fluxo. Após o ajuste feito, aperte o parafuso (6) em qualquer um dos furos existentes na porca de ajuste (9).

VÁLVULA DE PASSAGEM AJUSTÁVEL - VAP

POS	DENOMINAÇÃO
1	DISPOSITIVO ACOPLAMENTO PARA SERVO-MOTOR
2	HASTE DE CONTROLE
3	ARRUELA
4	EIXO
5	BUCHA DO EIXO
6	PARAFUSO DE TRAVA DA PORCA DE AJUSTE
7	PISTÃO MÓVEL
8	CORPO
9	PORCA DE AJUSTE DO PISTÃO REGULÁVEL
10	PISTÃO FIXO
11	FLANGE

TABELA A - Capacidade em m³/h de ar a 15,5° C baseada numa perda de carga através da válvula de 1/6 da pressão do ventilador e numa perda de carga adicional para a tubulação de 1/6 da pressão do ventilador.

Dimensão da Válvula	Pressão do ventilador em mm C.A.								
	265	350	440	530	700	800	1050	1400	
2"	85	95	106	116	134	150	164	189	
2 1/2"	134	155	172	189	219	245	268	311	
3"	210	240	271	297	342	385	421	484	
4"	367	424	481	523	605	679	741	854	

TABELA B - Fator de correção de temperatura.

Temp. ° C	150	200	250	300	350	400	450	500
Fator	1,46	1,64	1,81	1,99	2,16	2,33	2,5	2,68

SELEÇÃO DA VÁLVULA

- Para trabalho com ar à temperatura de 15,5°C, deve-se usar a tabela A, onde determinam as vazões, diâmetros de tubulação e conexões.
- Recomenda-se que a soma dos trechos retos de tubulação, tanto a jusante como a montante da válvula, não ultrapasse 8 metros e as curvas sejam no máximo 3 peças. Este total máximo de tubulação e curvas representa uma perda de carga de 1/6 da pressão do ventilador.

Obs.: Para outros arranjos de tubulação, procurar manter a mesma perda de carga alterando o dimensionamento da tubulação, ou considerar perdas de carga adicionais quando da seleção do ventilador. Quando usar as válvulas com ar aquecido, multiplicar o fator da tabela B pela vazão desejada antes de entrar na tabela A.